
RVR Electrical Hardware and Software
Amanda Hoeksema – Under the mentorship of Adam Watts

RVR’s Purpose
In order to streamline the work of technicians and limit their radiation

dosage in the accelerator tunnels, the Remote Viewing Robot (RVR)

can be deployed instead to pinpoint the source of failure. RVR

requires layers of improvement to begin such operation. The project

detailed here aims to modernize and modularize the electrical

hardware and software for the Remote Viewing Robot. For more

information about the improvements made to RVR’s design, refer to

the posters written by Magdalena Sarna, Emma Stachowicz, and

Maryum Fatima.

Overview of the electrical connections that will sit in the RVR’s chasse.

The Control Software

Results and Conclusions

With the main electrical connections established and a

functioning code written, the next steps are to write the

code for turning RVR and debug the current code to

ensure RVR runs without flaw.

FERMILAB-POSTER-22-100-STUDENT

This manuscript has been authored by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, Office of High Energy Physics.

Establishing the Electrical Connections

With the goal to improve connectivity, the system uses the opto-isolators to safely

connect the input terminals of the Sabertooth to the Raspberry Pi 4, protecting the

Raspberry Pi 4 from damage in the event of a possible surge. The Sabertooth is

essential in specifying the behavior of the circuit, setting the input to analog and

simplifying the control of RVR’s differential-drive. The necessary electrical connections

are made and secured through use of soldering, screw terminals, and wire ferrules.

[1] 25V battery (not pictured)

[2] 25W DC-DC converter

[3] Sabertooth

[4] Opto-isolators

[5] Kingpow IDC

[6] Raspberry Pi 4

The basic structure for the

electrical connections is as

follows:

Organizing the Electrical Connections

Closer view of the 3D printed DIN rail clip for the Raspberry Pi 4.

All electrical components are mounted to DIN rails

using 3D printed clips that are specifically designed

for each part. The clips allow for easy adjustment of

part position. The DIN rails mount to a 3D printed

base that attaches inside RVR’s chasse with heavy-

duty Velcro, permitting easy removal to work with the

electrical hardware and sturdy mounting to not shift

during operation.

The software is written in Python and depends on the

“LGPIO” libraries to interface with the Raspberry Pi 4’s

GPIO (general-purpose input/output) pins. The code

receives input from a Bluetooth controller and converts

this input to the required duty cycle and PWM (pulse-

width-modulation) signal to achieve the desired

movement. The process and conversion equations are

detailed below:

• Joystick down = 0V = Backwards movement

• Joystick middle = 2.5V = No movement

• Joystick up = 5V = Forward movement

Visual representation of the voltage changing on an

oscilloscope using the controller.

[1] (0.8206) / 0.0527

[2] 2.5 2.5

DutyCycle Voltage

Voltage Input

= +

= +

Equation [1] converts the necessary voltage to the duty cycle percentage.

Equation [2] converts the controller input to the needed voltage.

22

33

44

55
66

